
Random variables and Probability distributions 

 

A random variable is a variable whose value depends on the outcome of a 

random event/experiment. 

 

For example, the score on the roll of a die, the height of a randomly 

selected individual from a given population, the income of a randomly 

selected individual, the number of cars passing a given point in an hour, 

etc. Random variables may be discrete or continuous. 

 

Associated with any random variable is its probability distribution that 

allows us to calculate the probability that the variable will take different 

values or ranges of values. 

 

Probability distributions for discrete variables 

 

The probability distribution of a discrete r.v. X is given by a probability 

function f(X), which gives the probabilities for each possible value of X, 

and the range of possible values. 

 

f(X) = (some function) for X = X1, X2, …, Xn 

f(X)=0 for all other values of X 

 

Where f(Xi) = P(X=Xi) 

 

or (if, for example, X can take any positive integer value) 

 

f(X) = F(n) for X=n, a positive integer, where F is some function 

f(X) = 0 for other values of X 

 

This function must satisfy f(X)>=0 for all values of X, and ∑f(X)|all 

values of X = 1. 

 

E.g., let X depend on the toss of a fair coin, with X=1 if the coin lands 

heads, 0 if tails. Then 

 

f(X) = 0.5, for X=0,1 

f(X) = 0 otherwise 

 

Example 2: we toss a fair coin until it comes up heads. Let X be the 

number of times we toss the coin. It is fairly easy to show that 

 

f(X)=0.5
n
 for X=n, for n=1,2,3,…. 



f(X)=0 otherwise 

 

(Since there is a probability of 0.5 of getting heads first time, a 

probability of 0.5*0.5=0.25 of getting tails first, then heads second time, 

probability 0.5*0.5*0.5 of getting T,T,H, etc.) 

 

Expected values 

 

Expected values are descriptive measures indicating characteristic 

properties of probability distributions. The expected value of a r.v. can be 

seen as the ‘average’ value – not in the sense of the average of a sample, 

but the ‘theoretical’ average we’d expect if we repeated the experiment a 

large number of times. (The average of a theoretical model, rather than a 

set of observations). 

 

The Expected Value of a discrete r.v. X is defined as follows 

 

Let S be the set of possible values that X can take 

 

Then E(X) = ∑
∈SX

ii

i

XfX )(  

 

E.g. suppose X is the score on the roll of a fair die, so f(X)=1/6 for 

X=1,2,3,4,5,6, 0 otherwise; then 

 

E(X)=1*(1/6)+2*(1/6)+…+6*(1/6) = 21/6 = 3.5 

 

E.g. 2: Let f(X) = 0.5
n
 for X=n, n=1,2,3,…, f(X)=0 otherwise; then 

 

E(X) = Σ∑
∞

=1

5.0.
n

n
n  

 

Let E(X) = 1*0.5 + 2*0.5
2
 + 3*0.5

3
 + … 

 

Then 0.5E(X) =   1*0.5
2
 + 2*0.5

3
 + … 

 

So E(X)-0.5E(X) = 0.5+0.5
2
+0.5

3
 + …. 

 

But we know from previous work (intro maths) that the r.h.s. of this 

equation is equal to 1. 

 

So E(X)-0.5E(X) = 0.5E(X) = 1 



 

Hence E(X)=2. 

 

Other expected values can be readily defined (and are highly valuable in 

statistical analysis). E.g. E(X
2
) = )(

2
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i XfX
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Expected value operations 

 

a) For a constant a, E(a) = )()( aafXfX
SX

ii

i

=∑
∈

= a as f(X)=1 for 

X=a, 0 otherwise. So E(a) = a. 

b) For a r.v. X and a constant a, E(aX) = 

)()( i

SX

i

SX

ii XfXaXfaX
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∑∑
∈∈

= = aE(X) 

c) For two functions of X, g(X) and h(X), E[g(X)+h(X)] = 

∑
∈SX i

[g(Xi)+h(Xi)]f(Xi) = ∑
∈SX i

g(Xi)f(Xi) + ∑
∈SX i

h(Xi)f(Xi) = 

E[g(X)] + E[h(X)] 

d) For two r.v.s X and Y, E(X+Y) = E(X) + E(Y) (not so 

immediately easy to prove). 

 

Variance of X. By analogy of the definition of the variance for an 

observed frequency distribution, we have 

 

Var(X) = E{[X-E(X)]
2
} 

 

That is, Var(X) is the average value of the squared deviation of X from its 

mean. 

 

We can use expected value operations to get an alternative expression for 

Var(X): 

 

Var(X) = E{[X-E(X)]
2
}=E{X

2 
- 2E(X)X + [E(X)]

2
} = E(X

2
) –E[2E(X)X] 

+ E{[E(X)]
2
 } 

 

= E(X
2
) – 2E(X)E(X) + [E(X)]

2
 (since E[X] is a constant) 

 

= E(X
2
) – 2[E(X)]

2
 + [E(X)]

2
 

 

= E(X
2
) – [E(X)]

2
 

 



That is, Var(X) is the “mean of the square minus the square of the mean”. 

 

E.g. let X be the score on the roll of a fair die. So f(X) = 1/6 for X 

=1,2,3,4,5,6, f(X)=0 otherwise. We know that E(X)=3.5. 

 

Now E(X
2
) = 1

2
*f(1) + 2

2
*f(2) + … + 6

2
*f(6) 

 

= (1/6)*(1+4+9+16+25+36) = 91/6. 

 

Linear function of X. If Y = a +bX where a and b are constants, we have 

 

E(Y) = E(a+bX) = E(a) + E(bX) = a +bE(X) 

 

Var(Y) = E(Y
2
) – [E(Y)]

2
 = E(a

2
 + 2abX + b

2
X

2
) – [a+bE(X)]

2
 

 

= (a
2
 +2abE(X) + b

2
E(X

2
) – [a

2
 + 2abE(X) + b

2
E(X)

2
] 

 

= b
2
E(X

2
) - b

2
E(X)

2
 = b

2
[E(X

2
) – E(X)

2
] 

 

= b
2
Var(X) 

 

Note that the constant disappears when calculating the variance (as 

constants have no variance!), while the linear multiple of X is squared. 

 

Exercise: If Y = a – bX, show that E(Y) = a – bE(X), and Var(Y) = 

b
2
Var(X). 

 

Probability distributions for continuous random variables 

 

When dealing with a continuous r.v., it is not generally meaningful to talk 

of the probability of attaining any particular value. It is like asking what 

is the probability that a golf ball will land on a particular blade of grass. 

Instead, for a continuous r.v. X, we define a probability density function 

(pdf) f(X), which gives the relative probability of different values. We 

can meaningfully talk only of the actual probability of achieving certain 

ranges of values. For example, if X is the height of a random individual, 

then we don’t talk of the probability of someone being exactly 5’8”, but 

we can meaningfully talk of the probability of X lying between 5’7.5” 

and 5’8.5”. 

 

The probability density function f(X) is a function that assigns a non-

negative value to each real number. If X can take only values between 

say, a and b, then f(X) will take the form 



 

f(X) = (some function) a<X<b 

f(X) = 0   otherwise 

 

The probability of any given range of values of X is given by the area 

under the curve of f(X) for that range of values. That is 

 

P(c<X<d) = ∫
=

=

dX

cX

dXXf )(  

Note that since the total probability of all possible values must be 1, we 

must have that 

 

∫
∞

∞−

dXXf )(  = 1 

 

And in particular if X can only take values between a and b, then 

 

∫
b

a

dXXf )( = 1. 

 

 

The above graph shows an example pdf, f(X). The total area between the 

curve and the X-axis, stretching to infinity in each direction, must total 

one. The shaded area shows P(a<X<b). 

 

Expected values  are defined analogously to the discrete case: 

b a 

X 

f(X) 



 

E(X) = ∫
∞

∞−

dXXXf )(  

E[g(X)] = ∫
∞

∞−

dXXfXg )()(  

The rules for manipulating expectations are the same as those for discrete 

variables given in section 3.2. Likewise, we define 

 

Var(X) = E{X-[E(X)]
2
} = E(X

2
) – [E(X)]

2
 

 

Example; The rectangular distribution is given by 

 

f(X) = c, a<X<b 

f(X) = 0 otherwise 

 

That is, all values between a and b are equally likely, and no other value 

is possible. 

 

Now the total area under the curve of f(X) here is a rectangle of height c 

and width (b-a), so the area is c(b-a). We know this area must total 1, and 

hence 

 

c = 1/(b-a). 

 

 

 

 

 

 

 

 

 

 

 

We may now calculate E(X) 

 

E(X) = dX
ab

X
b

a

∫
−

 

 

c=1/(b-a) 

b a 



We have not done integration. The result is E(X) = (b
2
-a

2
)/2(b-a) = 

(b+a)/2, that is, the average of a and b, or the midpoint of the range of 

values X can take. 

 

Now E(X
2
) = ∫

−

b

a

dX
ab

X
2

= ∫
−

b

a

dXX
ab
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= (b
3
-a

3
)/3(b-a) = (b

2
+ab +a

2
)/3 

 

Hence Var(X) = (b
2
+ab +a

2
)/3 – [(b+a)/2]

2
 = (b-a)

2
/12 

 

Cumulative distributions 

 

For a discrete or continuous random variable X, we are often interested in 

the cumulative probability distribution for X, that is the probability that X 

will be less than or equal to any given value. 

 

If X is a discrete r.v. with probability distribution f(X), taking only 

integer values 0,1,2,3,…, we may define the cumulative probability 

function F(x) = P(X≤x) by F(x) = ∑
=

x

n

nf
0

)( . It is easy to see that 

f(x)=F(x)-F(x-1). 

 

For a continuous r.v. X with pdf f(X), we may define the cumulative pdf 

F(x)=P(X≤x) by F(x) = ∫
=

−∞=

xX

X

dXXf )(  

 

It is easy to show that dF/dx = f(x). (see diagram) 

 



 
 

Joint (bivariate) probability distributions 

 

These distributions arise when we consider the values taken by two 

random variables arising from the same event(s). 

 

The joint probability distribution for two r.v.s X and Y is some function 

f(X,Y), where f(Xi,Yj) = P(X=Xi and Y=Yj). 

 

Hence, we must have f(X,Y)>=0 for all values of X and Y, and the sum 

of f(X,Y) over all possible values must total one. 

 

For two continuous r.v.s X and Y, we can define the joint probability 

density function f(X,Y), a non-negative function such that the double 

integral of f(X,Y) over all values of X and Y is equal to one. 

 

∫ ∫
∞=

−∞=

∞=

−∞=

X

X

Y

Y

dYdXYXf ),(  = 1 

 

Example. Let X = no. of people in a house and Y = no. of rooms in a 

house, for a group of households. The joint probabilities are shown in a 

table: 

 

Y/X 1 2 3 4 Total 

1 .12 .08 .05 0 .25 

2 .1 .15 .15 .1 .5 

3 .05 .05 .1 .05 .25 

X=x X 

f(X) F(x)=P(X≤x) 



Total .27 .28 .3 .15 1.00 

 

Note that the probabilities sum to 1. 

 

Example: Let X be the height of a randomly selected individual from a 

given group, and Y be that individual’s weight. We will not attempt to 

define a pdf here. 

 

Marginal probability distributions are obtained by ignoring one variable, 

and looking at the total probability (or pdf) for the other. In the above 

table, the marginal distribution for X is given by the numbers in the Total 

row at the bottom, while the marginal distribution for Y is given by the 

figures in the right-hand column. 

 

For continuous variables, the marginal pdf for X, fX(X) is given by 

∫
∞=

−∞=

Y

Y

dYYXf ),(  

 

That is, for each possible value of X, we look at the graph of f(X,Y) 

against Y, and take the total area under this curve. 

 

Similarly, the marginal pdf for Y, fY(Y) = ∫
∞=

−∞=

X

X

dXYXf ),(  

 

Example 

 

Let X be a random variable taking values between a and b, and Y a r.v. 

taking values between c and d. Let f(X,Y) = 1/(b-a)(d-c) for a<X<b and 

c<Y<d, f(X,Y)=0 otherwise. (A uniform distribution, with all possible 

values equally likely). 

 

Then the marginal distribution for X, fX(X) =  

 

abcdab

cd
dY

cdab

d

cY
−

=
−−

−
=

−−
∫
=

1

))(())((

1
 

 

Similarly, we can easily show that fY(Y) = 1/(d-c). This is as it should be, 

as it means the total probability for the marginal distribution of X adds up 

to (b-a)/(b-a)=1, and the same for the marginal distribution of Y. 

 



Independence and dependence 

 

R.v.s X and Y are said to be independent if f(X,Y) = f(X)f(Y) for all 

values of X and Y. (This definition applies to both discrete and 

continuous variables). 

 

In the above table, the discrete variables X and Y are not independent. 

For example, f(1,1)=0.12, but f(1)f(1)=0.27*0.25 = 0.0675. (In other 

words, the combination of one room and one person is more likely than if 

they were independent – there being one room increases the probability 

of there being only one person.) 

 

In the example of height and weight of a given individual, we would not 

expect these two (continuous) variables to be independent. We would 

expect the two variables to tend to be high or low together. For example, 

we would expect f(high weight, high height) to be greater than f(high 

weight)f(high height), but f(low weight, high height) to be less than f(low 

weight)f(high height). 

 

Expected values for joint distributions 

 

We can define expected values for combinations of two r.v.s X and Y, 

e.g. E(X+Y), E(XY), etc. For example, for a discrete distribution, 

suppose X can take values Xi in some set S, and Y can take values Yj in 

some set T, then 

 

E(XY) = ∑ ∑
∈ ∈SX TY

jiji

i j

YXfYX ),(  

 

For a continuous distribution, 

 

E(XY) = dYdXYXXYf

X Y

∫ ∫
∞

−∞=

∞

−∞=

),(  

 

For E(X+Y), replace XY in the above equations with X+Y, etc. 

 

We quote several important results without proof: 

 

E(X+Y) = E(X) + E(Y) 

E(X-Y) = E(X) – E(Y) 

 

For independent variables, we have similar results for variances: 



 

Var(X+Y) = Var(X) + Var(Y) 

Var(X-Y) = Var(X) + Var(Y) Why are these both positive? 

 

For dependent variables, the result is not so simple. We need measures of 

to what extent X and Y depend on each other. Later we will define 

measures such as the correlation coefficient. For now, we will define the 

covariance of X and Y,  

 

Cov(X,Y) = E{[X-E(X)][Y-E(Y)]} = E(XY) – E(X)E(Y) 

 

Going back to variances, we obtain the results 

 

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) 

Var(X-Y) = Var(X) + Var(Y) – 2Cov(X,Y) 

 

Let us suppose that X and Y tend to go together, that is tend to be both 

high or both low. Then we will usually get X-E(X) and Y-E(Y) to be 

either both positive or both negative, so their product will on average be 

positive, giving a positive Covariance. If X and Y tend to go in opposite 

directions, then we will usually get one of X-E(X) and Y-E(Y) to be 

positive, and the other negative, so that their product is negative, giving a 

negative Covariance. If X and Y are independent, then [X-E(X)] and [Y-

E(Y)] are equally likely to be positive and negative in either combination, 

so the Covariance will be zero. In fact we can define independence in this 

way. 

 

 

 

 

Correlation coefficient 

 

For two random variables X and Y, the correlation coefficient, r, is 

defined as 

 

r= 
)()(

),(

YVarXVar

YXCov
 

 

The correlation coefficient always lies between –1 and 1. If r=1, this 

means perfect positive correlation – it means that Y has an exact positive 

linear relationship with X. If r=-1, we have perfect negative correlation. 



The nearer r is to 1 or –1, the closer the relationship between X and Y. 

The closer to 0, the weaker the relationship. (See graphs below) 

 

 

 

 

It should be noted that correlation between two variables does not 

necessarily mean causation between them. 

 

The Binomial distribution 

 

The binomial distribution is probably the most important probability 

distribution for discrete variables. It arises as follows. 

 

We perform an experiment (trial) that can have two results: success (S) or 

failure (F). We repeat the trial n times under exactly the same conditions. 

The results of the trials are independent of each other, and in each case, 

the probability of success is P. Such trials are called Bernoulli trials. 

 

Let X be the number of successes from n trials. Then X has the binomial 

distribution with parameters (n,P). The binomial distribution is given by: 

 

f(X) = XnX
X

n
PPC

−
− )1( , for X = 0,1,2,…,n, f(X) = 0 otherwise. 

 

Where 
n
CX is the expression for the number of combinations of X from n, 

that is the number of ways of choosing X objects out of n, where order is 

irrelevant. 
n
CX = n!/(X!(n-X)!) 

 

Y 

X 

High positive r 

Y 

X 

Low negative r 



Why? Well, we can obtain X successes from n trials in 
n
CX different 

ways, each of which is a mutually exclusive sequence of successes and 

failures. Therefore the probability of getting one of them is equal to the 

sum of their individual probabilities. What is the probability of any given 

sequence of successes and failures? E.g., if n=5, what is the probability of 

getting S, S, F, S, F? Since the trials are independent, we may multiply 

together the individual probabilities of the result of each trial, so 

P(SSFSF) = P(S)P(S)P(F)P(S)P(F) = P*P*(1-P)*P*(1-P) = P
3
(1-P)

2
 

 

In general, the probability of any sequence with X successes and n-X 

failures is P
X
(1-P)

n-X
, and there are 

n
CX of them, giving the distribution 

for f(X) shown above. 

 

It can be shown that E(X) = nP, Var(X) = nP(1-P), and ∑
=

=

n

X

Xf
0

1)( . 

 

Example Suppose we toss a fair coin 5 times and let X be the number of 

heads. (Successes). Then X has binomial distribution with n=5, P=0.5. 

We write X~B(5,0.5) 

 

We can calculate f(X) for X=0,1,…,5. So, f(0) = 
5
C0(0.5)

0
(1-0.5)

5-0
 

 

= [5!/(5!*0!)]*0.5
5
 = 1/32 (since 0! Is defined to be equal to 1 – the 

number of ways of arranging 0 objects.) 

 

f(1) = 
5
C1(0.5)

1
(0.5)

5-1
 = [5!/(4!*1!)]*0.5

5
 = 5/32 

 

Similarly, f(2)=
5
C2/32 = [(5*4)/(2*1)]/32 = 10/32 

Also f(3)=10/32 

f(4)=5/32 

f(5) = 1/32. 

 

It is not hard to show that if P=0.5, then f(X)=f(n-X) – since getting X 

successes is the same as getting n-X failures, and successes and failures 

are equally likely. 

 

The binomial distribution is positively skewed when P<0.5, and 

negatively skewed when P>0.5. It is symmetrical when P=0.5. When n is 

large, the binomial distribution approximates to the normal distribution 

(see below), irrespective of the value of P. 

 



Tables of the individual or cumulative probabilities of the binomial 

distribution are included in most text books and collections of statistical 

tables. 

 

In an actual series of Bernoulli trials, we define the sample proportion to 

be p=X/n. Thus p is itself a random variable. (It is discrete, even though it 

takes non-integer values, since it can only take fractions denominated by 

n). We have 

 

E(p)=E(X/n)=(1/n)E(X)=nP/n=P. 

 

So on average the sample proportion will be equal to the actual success 

probability; 

 

Var(p) = Var(X/n) = Var(X)/n
2
 = nP(1-P)/n

2
 = P(1-P)/n 

 

Hence, the standard deviation of p, SD(p)=
n

PP )1( −
 

 

E.g., if P=0.5, then E(p) = 0.5, and Var(p) = 0.25/n, SD(p)=
n

5.0
. 

 

Thus, the variance (and SD) of p diminishes as n increases, in other 

words, the more trials we conduct, the closer the sample proportion is 

likely to be to the actual probability. 

 

The normal distribution 

 

The normal distribution is of fundamental importance in statistical 

analysis. Many continuous variables are distributed normally (e.g. height, 

weight, very often test scores). It approximates some observed 

distributions, and it arises frequently in sampling problems.  

 

What is more, if we start with any probability distribution for a random 

variable X (within certain conditions), and take the average value of X 

over a large number of repeated trials, then the distribution of this 

average value approximates a normal distribution as n gets large. This is 

true, for example, of the binomial distribution, as mentioned above. This 

makes the normal distribution extremely important. 

 

The normal distribution is defined by the probability density function: 

 























 −
−=

2

2

1
exp

2

1
)(

σ

µ

πσ

X
Xf , for -∞<X∞.  

 

(Exp(x) is the same as e
x
). 

 

Here, µ and σ are the parameters of the distribution. We write X~N(µ,σ
2
). 

 

The normal distribution has the famous “bell curve” shape. It can be 

shown that 

 

(a) E(X) = µ i.e. µ is the arithmetic mean 

(b) Var(X) = σ
2
, i.e. σ is the standard deviation. 

(c) It is symmetric, with the mean µ also the median and the mode 

of the distribution.  

(d) Since the distribution is symmetrical, f(µ+a)=f(µ-a) for any 

constant a. 

 

Area under the normal curve 

 

We know P(a<X<b)= ∫
b

a

dXXf )( , the area under the curve between a and 

b. Unfortunately, this integral is not easy to find, that is, there is no 

simple function whose differential is f(X). Fortunately, there are standard 

tables of the cumulative probability density function of the standard 

normal distribution – the normal distribution with µ=0 and σ
2
=1.  

 

Also fortunately, the cumulative distribution of any normal distribution 

can easily be calculated in terms of the standard normal distribution. 

What we must do is to express the value of a normal variable in terms of 

the number of standard deviations from the mean. 

 

That is, if X~N(µ,σ
2
), then it can be shown that  

 

P(X≤X0) = P(z≤(X0-µ)/σ) where z is a standard normal variable, 

z~N(0,1). 

 

For example, suppose X~N(10,4). (That is µ=10, σ
2
=4). Then 

 

P(X≤14) = P(z≤(14-10)/2) = P(z≤2) where z is a standard normal 

variable. Thus, we can look up P(Z≤2) in a table of the standard normal 

distribution, and we have our answer. 



 

Some additional simple rules will help us: 

 

i) P(a<X<b) = P(X<b) - P(X<a) (This applies to any 

distribution) 

ii) P(X>a) = 1-P(X<a) 

iii) If Z0<0, then P(z<Z0) = 1-P(z>Z0) = 1-P(z<-Z0) (see 

graph on whiteboard). 

 

For example, let X~N(10,2
2
). What is P(7<X<11)? 

 

P(7<X<11) = P(X<11) – P(X<7) 

 

= P(z<
2

1011 −
) – P(z<

2

107 −
) = P(z<0.5) – P(z<-1.5), where z~N(0,1) 

 

= P(z<0.5) – (1-P(z<1.5)) by rule 3 

 

= P(z<0.5) + P(z<1.5) – 1. 

 

We can now look these last two probabilities up from a table of the 

cumulative standard normal distribution. 

 

A couple of useful facts 

 

P(-1<z<1) ≈ 0.68 

 

P(-1.96<z<1.96) ≈ 0.95 

 

Where z~N(0,1) 

 

In other words, roughly 95% of observations from a normal distribution 

are within two standard deviations of the mean. 

 

Linear transformation 

 

If X~N(µ,σ
2
) and Y = a+bX where a and b are constants, it can be shown 

that Y~N(a+bµ,b
2
σ

2
). 

 

Reproductive property 

 

This is another property of the normal distribution which is important in 

sampling theory. It states that: 



 

If X1~N(µ1,σ
2
1) and X2~N(µ2,σ

2
2) 

 

And if X1 and X2 are independent, then 

 

(X1+X2)~N(µ1+µ2,σ1
2
+σ2

2
) and 

 

(X1-X2)~N(µ1-µ2,σ1
2
+σ2

2
). 

 

This is important because it means that if a random quantity is made up 

from adding together a lot of independent different factors, each of which 

are themselves normally distributed, then the result will also be normally 

distributed. 

 

Example 

 

Suppose we know that male weekly earnings are normally distributed 

with mean £300 per week and variance 100
2
, and female earnings have 

mean £240 and variance 80
2
. What will be the probability distribution of 

the difference between a randomly selected man and a randomly selected 

woman? 

 

By the above property, the distribution will be normal, with mean £60 (in 

the man’s favour) and variance 100
2
 + 80

2
 ≈ 128

2
. In other words, on 

average the man’s income will be £60 higher, as we’d expect, but the 

high standard deviation of £128 means that quite often the woman’s 

income will be higher. 


